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Abstract

A greedy omnidirectional relay scheme is developed, ancctiiezsponding achievable rate region
is obtained for the all-source all-cast problem. The disirss are first based on the general discrete
memoryless channel model, and then applied to the addithitewGaussian noise (AWGN) models,
with both full-duplex and half-duplex modes.

. INTRODUCTION

A general framework of omnidirectional relay has been dmvedl in [1]-[4]. It generalizes
the decode-and-forward relay strategy introduced in [3hwle network coding idea introduced
in [6] to the case of wireless networks with multiple sourcéschnically, it is a combination
of block Markov coding with binning, so that each relay camwtaneously transport multiple
messages in different directions. The effectiveness sfdmnidirectional relay strategy has been
demonstrated by the result that it is possible to completkiginate interference in the network,
and each node can fully exploit the signals transmitted byhal other nodes.

In this paper, we develop a special “greedy” omnidirectisakay scheme in the sense that each
node tries to relay as many messages as possible. Withowg tegjulated by network topologies,
this greedy scheme is simple to implement, and can be aéafatitime-varying situations.

Our discussion will first be on the general discrete memasy/lehannel model. And then,
motivated by wireless networks, the results will be apptethe AWGN models, with both full-
duplex and half-duplex modes. For simplicity, in this papee focus on the all-source all-cast
problem, and obtain a general achievable rate region.

[I. A GENERAL DISCRETEMEMORYLESSNETWORK CHANNEL MODEL
Consider a network ofi nodes\ = {1,2,...,n}, with the channel modeled by

(X1 X oo XX, D1, s Ynl|Tr, o ), Y1 X X V).

At each timet = 1,2,.. ., every nodei € N sends an inpul;(¢) € X;, and receives an output
Y;(t) € )i, and they are related vig(Y;(t), ..., Y, (t)| X1(t), ..., X.(t)).
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IIl. A GREEDY OMNIDIRECTIONAL RELAY SCHEME

The essence of this “greedy” scheme is that at the end of elach,every node decodes
as many messages as possible, and in the next block, relafse ahessages it has decoded,
with the restriction of adding at most one new message foh satirce. To be more specific,
every nodei relays the message;(by), if it has decoded it, and it has relayed all the messages
w;j(b), b=1,...,by — 1 previously.

Consider the all-source all-cast problem, where each riodean independent source, and
wants to send some common information to all the other notldsearate R;. With this greedy
omnidirectional relay scheme, we have the following achlide rate region for the all-source
all-cast problem.

Theorem 3.1: Consider the all-source all-cast problem. With the greeawidirectional relay
scheme, a rate vect@R;, Ry, ..., R,) is achievable if for any nonempty subs&tc N/, there
is a nodeiy € S, such that

Z Rj < I(Xse; Y| Xs) (1)

jES®
for somep(z;)p(xs) - - - p(z,), WhereXs. = {X; : j € S}, andXs = {X, : i € S}.

For three-node networks, the achievability of the rateaegirescribed by (1) has been proved
in [2, Thm 4.1], where, instead of the greedy relay schenereéhay ordering was set according
to the relative strengths of the channels between diffenedes. However, even for three-node
networks, the proof in [2] turned out to be rather complidagnce there were too many different
cases to address. Here, in Secfiolh VI of this paper, we wésgmt a simple and general proof
based on the greedy relay scheme, which applies to netwdtksawy number of nodes.

Now, we consider a time-varying operation of the networkhvdifferent input distributions in
different blocks. Specially, we are interested in the pid@ase, where the input distribution in
blockb is py(x1)pk(x2) - - - pr(x,) With £ = (b mod K') for some period< > 2. Correspondingly,
we have the following conclusion.

Theorem 3.2: Consider the all-source all-cast problem. With the pedaglieedy omnidirec-
tional relay scheme, a rate vectoR,, Ry, ..., R,) is achievable if for any nonempty subset
S C N, there is a nodé, € S, such that

K
1
Z Rj < E kz_;fk(ch; }/io‘XS)

jeS®
where, the mutual informatior, is calculated based opy.(z1)px(x2) - - - pr(Ty)-
Obviously, to obtain more general results, we can also densiifferent block lengths. Let
block b have lengthZ, with k£ = (b mod K'). Then, we have the following conclusion.



Theorem 3.3. Consider the all-source all-cast problem. With the pedaglieedy omnidirec-
tional relay scheme with varying block lengths, a rate ve¢f®,, R, . .., R,) is achievable if
for any nonempty subset c N, there is a node, € S, such that

Z R] < ZLka XSC7 20|X5)
Ek 1

jese Ly, k=1

where, the mutual informatiof(-) is calculated based op) (1 )pr(x2) - - - pr(xy).

IV. FuLL-DuPLEX AWGN WIRELESSNETWORKS

Consider the following AWGN wireless network channel modéh full-duplex mode:

t)=> g Xi(t)+ Z;(t), ViEN, t=12 .. 2)
ieN
i#j
where, X;(t) € C' andY;(¢t) € C' respectively denote the signals sent and received by Node
i € N at timet; {g;,; € C' : i # j} denote the signal attenuation gains; af¢) is zero-mean
complex Gaussian noise with variange

Consider the average power constraint:
—Z|X W2 <P forall T=1,2,..., andie N.

Then applying Theoreﬂrﬂ.l, we have the following conclusion

Theorem 4.1: Consider the all-source all-cast problem for the full-eaxpRWGN wireless net-
works. With the greedy omnidirectional relay scheme, avatgor( Ry, Rs, ..., R,,) is achievable
if for any nonempty subsef C N, there is a nodé, € S, such that

> se 195 |2Pj
ZRj<log<1+ J< NO .

jese

V. HALF-DUPLEX AWGN WIRELESSNETWORKS

Consider the following AWGN wireless network channel modéth half-duplex mode: At
timet =1,2,..., the transmitter set i (¢t) C A/, and the receiver set R(t) = N\7 (¢), and

Z glj (t)> VJ € R<t)7 (3)

1€T (¢
where, X;(t) € C* andY;(t) € C* respectlvely denote the signal sent by nedend the signal

received by node at timet; {g;; € C' : i # j} denote the signal attenuation gains; afd¢)
is zero-mean complex Gaussian noise with variaNce



Consider the following average power constraint:

T
> [ X () PTier )
T
> i1 LieT (o)
whereI[H is the indicator function:

I )L ifieT(t),
herol = 0, otherwise.

<P forallT=1,2,..., andi € N,

Consider a periodically block-varying operation of thewmtk. In blockb = 1,2,..., the
block length isLy, the transmitter set ig;, and the receiver set B, with £ = (b mod K) for
some periodk” > 2. Then by Theorem_ 313, we have the following conclusion.

Theorem 5.1: Consider the all-source all-cast problem for the half-dMpRWGN wireless
networks. With the periodic greedy omnidirectional relahame with varying block lengths, a
rate vector(Ry, Rs, ..., R,) is achievable if for any nonempty subs&tc N/, there is a node
1o € S, such that

K 2
1 Z‘eSCmT ‘gj,io‘ jj]
YR < = Lilljery log (1 et .

K
jese Ek:l Ly k=1

VI. PROOF OF THETHEOREMS

Proof of Theorem[3.1: The key to the proof is the technical Lemma 4.1 developed jn [4
which basically says that once the inequality (1) holds,engctan always decode the messages
of some nonempty subset &. We will prove by induction that each node can decode the
messages sent by all the other nodes.

According to the greedy relay scheme, once a nodas decoded some messages of another
node j, it will always transmit the messages of nogen the subsequent blocks. We say that
node: covers a set of nodeS, if nodei has decoded some messages of every node end
therefore, will transmit the messages of every nodé im the subsequent blocks. It is obvious
that at the end of any block > 1, each node can decode the blocktransmission of some
other nodej; # i, by applying the Lemma td 1) witls = {i}. In other words, at the end of
block b, each node will at least cover what have been covered by certain two addei} at
the end of blockh — 1. For b > 2, since at the end of block — 1, each one of the two nodes
{ji,i} must have covered what had been covered by at least a paide&rat the end of block
b — 2, we have that at the end of bloék node: will at least cover what had been covered by
three nodes at the end of bloék— 2. To see this, there are two cases: If at least one of the
two pairs is different from{j;, i}, the total covering is obviously at least three nodes; Ihitbe



two pairs are identical t¢j;,i}, then one of the two nod€fgj;, i} must be able to cover another
node according to the Lemma applied[id (1) wittset to{j;,}, thus still leading to a covering
of at least three nodes. Therefore, at the end of any bdoek2, each node will at least cover
what had been covered by certain three nodes at the end & blec.

Now, since at the end of any bloék> 4, each node at least covers what had been covered
by certain three nodej;, k;, i} at the end of block — 2, while each of them in turn must have
covered what had been covered by a set of three nodes at thef &hack b — 4, we have that
at the end of block, node: will at least cover what had been covered by four nodes at the
end of blockb — 4. To see this, similarly there are two cases: If at least onthefthree sets is
different from{j;, k;, i}, the total covering is at least four nodes; If all the threts see identical
to {7, k;, 1}, then one of the three nodég;, k;, i} must be able to cover another node according
to the Lemma applied ta 1) witly set to{y;, k;,:}, thus still leading to a covering of at least
four nodes. Therefore, at the end of any bldck 4, each node will at least cover what had
been covered by certain four nodes at the end of bloekd.

Inductively, it is easy to see that at the end of any bléck 22, each node will at least
cover what had been covered by certaimodes at the end of blodk— 2™~2. Since each node
covers itself by the end of block 0, for a network of any finitenodes, each node will cover
the whole network, i.e., be able to decode some messagey a@ff dhe other nodes, at least by
the end of blockh = 272,

Before we conclude the proof, we need to demonstrate thatie¢heding delay is finite, so
that there is no rate loss by block Markov coding. We use aradidtion argument. Suppose
that the delay of some nodedecoding the messages of another ngds not upper bounded,
ie.,

lim sup[D; (w; (b)) — b] = o0 4)

b—oo
whereD;(w;(b)) denotes the block, by the end of which, nadéecodes the message(b)—the
block-h message of nodg. Since at the end of any blodk > 1, node: always decodes the
block- transmission of another node, [fl (4) holds, then there musst enother node; # i,
such that
lim sup[D;, (w;(b)) — b] = oo. (5)

b—o00

In fact, if no other nodes encounter an unbounded delay, tieeather nodes will relayv,(b)

with an unbounded delay, and then nadeill not decodew;(b) with an unbounded delay.
Now, since bothi andi; encounter unbounded delay in decodingb), for the same reason

as above, there must be a third node that encounters untwwaedey in decodingu;(b). This



argument can be continued, so that all the nodes have to etetainbounded delay in decoding
w;(b), including nodej itself. This is obviously in contradiction. Thereforg] @nnot hold, i.e.,
all the decoding delays in the network must be uniformly wcby some constafii.
O
Proofs of Theorems_3.2 and B.3 follow similarly by treatingey K blocks together as a
group block, and applying the argument above to the groupkkloTheorems 4.1 arid 5.1 are
simple applications.
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